Regularization Comparison

Review, 3/31 - 4/5

- Confidence intervals
- Bootstrap

- Prediction Framework: Train, Development, Test
- Overfitting: Bias versus Variance
- Feature Selection: Forward Stepwise Regression
- Ridge Regression (L2 regularization)
- Lasso Regression (L1 regulatization)

Common Goal: Generalize to new data

N-Fold Cross-Validation

Goal: Decent estimate of model accuracy

• • • •

Supervised vs. Unsupervised

Supervised

Predicting an outcome

Loss function used to characterize quality of prediction

$$L(y, \hat{y}) = (y - \hat{y})^2$$

Supervised vs. Unsupervised

Supervised

Predicting an outcome

E(y|X)

Loss function used to characterize quality of prediction

$$L(y, \hat{y}) = (y - \hat{y})^2$$

Unsupervised

- No outcome to predict
- ullet Goal: Infer properties of P(X) without a supervised loss function.
- Often larger data.
- Don't need to worry about conditioning on another variable.

K-Means Clustering

Clustering: Group similar observations, often over unlabeled data.

K-means: A "prototype" method (i.e. not based on an algebraic model).

Euclidean Distance:
$$d(x_i, x_{i'}) = \sqrt{\sum_{j=1}^{m} (x_{ij} - x_{i'j})^2} = ||x_i - x_{i'}||$$

centers = a random selection of k cluster centers
until centers converge:

- 1. For all x_i , find the closest center (according to d)
- 2. Recalculate centers based on mean of euclidean distance

Review 4-7

- Cross-validation
- Supervised Learning
- Euclidean distance in m-dimensional space
- K-Means clustering

K-Means Clustering

Understanding K-Means

(source: Scikit-Learn)

Dimensionality Reduction - Concept

Dimensionality Reduction - PCA

Linear approximates of data in q dimensions.

Found via Singular Value Decomposition:

$$X = UDV^{T}$$

Review 4-11

- K-Means Issues
- Dimensionality Reduction
- PCA
 - O What is V (the components)?
 - Percentage variance explained

Classification: Regularized Logistic Regression

 $\lambda ||\beta||_2^2$ $\lambda ||\beta||_1$

Bayes classifier: choose the class most likely according to P(y|X). (y is a class label)

Bayes classifier: choose the class most likely according to P(y|X). (y is a class label)

Naive Bayes classifier: Assumes all predictors are independent given y.

$$P(Y = y|A = a, B = b, C = c) = p(y|a)p(y|b)p(y|c)$$

$$P(y|X) = \prod_{i=1}^{m} P(y|X_i)$$

$$P(y|X) = \frac{P(y)P(X|y)}{P(X)}$$
 Bayes Rule:
$$P(A|B) = P(B|A)P(A) / P(B)$$

$$P(y|X) = \prod_{i=1}^{m} P(y|X_i)$$

Maximum a Posteriori (MAP): Pick the class with the maximum posterior probability.

$$\hat{y} = arg \max_{y} P(y) \prod_{i=1}^{m} P(X_i|y)$$

Maximum a Posteriori (MAP): Pick the class with the maximum posterior probability.

 $\hat{y} = arg \max_{y} \left(P(y) \prod_{i=1}^{m} P(X_i|y) \right)$